
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

1964-01

Mitrovic's method: Some fundamental techniques

Thaler, George J. (George Julius)

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/31802



TA7 
.U6 
no.42 

George J. Thaler 

MITROVIC'S METHOD - SOME 
FUNDAMENTAL TECHNIQUES. 

I . 

I • 
I 



t";ttcr::y, Californi~ 



UNITED STATES 
·NAVAL POSTGRADUATE SCHOOL 

MITROVIC' S METHOD -

SOME FUNDAME~~AL TECHNIQUES 

by 

GEORGE J. THALER, DR. ENG. 
If 

TOYOHI OHTA, B.S., M.S. 

RESEARCH PAPER NO. • lf ~ 

J A!\'UARY 1964 

I 
L -----



, " 

MITROVIC'S METHOD - SOME FUNDAMENTAL TECHNIQUES 

Chapter I 

1.1 

1.2 

1.3 

Chapter II 

2.1 

2.2 

2.3 

Chapter III 

3.1 

3.2 

Chapter IV 

4.1 

4.2 

4.3 

4.4 

Chapter v 

Chapter VI 

6.1 

6.2 

APPENDIX 

VITAE: 

Table of Contents 

BASIC CONCEPI'S 

Introduction, Objective 

Review of Mitrovic's Method 

Bibliography 

THE GENERALIZED METHOD 

Siljaks Results 

The Determinantal Approach. Tabulation of 

Equation Pairs 

Discussion 

STABILITY CRITERIA 

Basic Derivations 

Summary of Enclosure Criteria - Line cut first 

and the least number of cutting-points 

SKETCHING PROCEDURES 

Need for Sketching ~ocedures 

Basic Manipulations in Sketching the Mitrovic 

Curves 

Tabulation of Results and Suggested Procedures 

Illustrations of the Sketching Techniques 

THE DIGITAL COMPUTER PROGRAM 

A PROCEDURS FOR COMPENSATION DESIGN 

Cascade Compensation 

Cascade Compensation (Continued 

TOYOMI OHTA, B.S., M.S. 

GEORGE J. THALER, DR. ENG. 



1.1 Introduction, Objective 

CHAPTER I 

BASIC CONCEPTS 

In the analysis of linear dynamic systems the mathematical des­

cription can be formulated as a single ordinary linear differential 

equation with constant coefficients. Upon application of transform 

methods a polynomial coDmlonly called the "characteristic equation" is 

obtained. An essential part of most analysis problems is the evalua-

tion of the roots (zeros) of this characteristic equation. Mitrovic (1,2) 

has developed a graphical technique which permits ready evaluation of the 

roots as a function of the values of two of the coefficients of the poly­

nomial. 

While there are many methods for evaluating the roots of a poly­

nomial, few of these methods are of significant advantage in engineering 

synthesis problems. Mitrovic's method, because it relates the root values 

to coefficient values in a convenient graphical representation, provides 

a very useful approach to design. 

Most of the methods available for analysis and design are either 

~ parameter methods (such as the root locus method) or evaluate dynamic 

characteristics indirectly, or both (such as most frequency domain methods). 

Mitrovic's method is basically a~ parameter method, but is readily ex­

tended to three parameters. It is possible to extend the method to handle 

~ than three parameters, but the practical value of such techniques 

has not yet been established. 

The original development by Mitrovic (1,2) considered only two co­

efficients of the polynomial, i.e., for an expression of the form 
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(1-1) 

the original development considers analysis and synthesis only in terms 

of a
0 

and a1 . More recently (3,4) the basic concepts have been gener­

alized to permit analysis and design in terms of any~ coefficients. 

The objective of this research paper is to provide detailed analyses. 

procedures, equations and techniques which will reduce the more recent 

advances to a more practical level. This is to be done by providing: 

a) detailed stability analyses and rules for applying them to any 

of the Mitrovic planes. 

b) tabulated equation pairs to assist the computations. 

c) procedures and techniques for sketching the curves with a min-

imum amount of computational labor. 

d) tabulated relationships to aid the sketching. 

e) a digital computer program to assist with detailed computa-

tions. 

f) some selected illustrations of the results in design applications. 

1-2. Review of Mitrovic's Method. 

If all of the roots of a polynomial be inside some area in the 

s-plane, then proof of this can be established by enclosing the area by 

a contour,;~pping the contour onto a polar plane through the charact-

eristic polynomial as a mapping function, and analyzing the polar contour 

with the Principle of Argument. This is essentially Mitrovic's Method. 

He chose as mapping contours only the imaginary axis or a radial straight 

line in the left half plane, closing his contour through a circular arc 

of infinite radius so as to enclose all or part of the left half plane. 
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With mapping contour defined as above, a point on the contour is de-

fined by 

s = w ej c ~ + a)= -w sin a + r w cos a 
n n n 

= - c w + j w J,.-1---c2 
n n (1-2) 

Inserting equation 1-2 in 1-1 and requiring that reals and imaginaries are 

zero independently provides two equations in terms of w , the coefficients, 
. n 

and certain functions of C. But C is a known number and for the usual case 

of analysis the coefficients are known. Thus two equations in one unknown 

(w) are obtained. Mitrovic's procedure was to define (select) two coeffi­
n 

cients as unknowns, thus providing two equations in two unknowns and a 

common parameter, w . He solved the equations for the unknown coefficients n ~ 

in terms of w. Then'choosing a value for C and letting w take selected 
n n 

values, curves can be obtained by plotting one coefficient as ordinate and 

the second as abscissa with w as a parameter. 
n 

If this is done for a polynomial for which all coefficients are 

known numerically, then the actual values of the coefficients which were 

designated variables are the coordinates of a single point on the Mitrovic 

plot. Mitrovic showed how to evaluate stability and all left half plane 

roots of the polynomial from his curves and the location of this one point. 

If this point, called the M-point, is moved to a new location new roots and 

new coefficient values are defined. Then the physical system can be provi-

ded with the dynamics specified by the new roots if the system can be 

changed so that the two designated coefficients assume their new values 

without changing any other coefficients. This, in essence, is the result 

provided by Mitrovic, and to it he added considerable detail regarding 

specific techniques for using the method to design feedback control systems. 
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In his treatment Mitrovic defined as variables only the coefficients 

a1 and a
0 

(see equation 1-1). Elliott, Heseltine and Thaler (3) used sev­

eral other coefficients as variables in specific problems involving the de­

sign of feedback compensation for control systems, but did not generalize 

these results. Later Siljak made an independent study which generalized 

Mitrovic's results to any pair of coefficients, but did not expand or apply 

his results. This, then, was essentially the state of development of 

Mitrovic's method when this research was undertaken; the basic method using 

only the a
0 

and a1 coefficients is well developed and techniques are avail­

able for applying it to many design problems. Mitrovic (1) and Siljak (5) 

also applied this method to sampled data systems. The basic theory of the 

generalized method has been established, and a few techniques have been 

developed to apply it to feedback compensation design. In general, practical 

ways to interpret stability, and to apply the generalized theory to analysis 

and design are lacking. Some advances in these areas are presented in this 

report. 
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CHAPTER II 

THE GENERALIZED METHOD 

2.1 Siljak's Results. 

Through a formal derivation and rigorous proof Siljak obtained , in 

symbolic form, a_generalized expression for the Mitrovic Curves in terms 

of any two selected coefficients. These results are; for Bi = Bj, (i '• > j) 

Bi =~~~0~ w~rpk-J (I;:~Aw~rpj-i (!;:)] 

B\i J ~ ~ w~ rpk-i <C~ /fw!, rp . . (l;:)l ~=0 J/ I~ ~-J j 
where Ak is the coefficient of the k'th order term of the original polynomial, 

and~k(C) are the functions defined by Mitrovic. 

2.2 The Determinantal Approach. Tabulation of Equation Pairs. 

Mitrovic's original result, (rearranged as in Ref. 2) expressed with 

all ·coefficients designated as a's is g 

a = 
0 

2 [ . 2 n-2 ~ 1 ... ] 
-wn a2. ~1 + a3 wn cp2 + a4 wn 'P3+ · · · + an wn n-

where the cp's are functions of C and are tabulated elsewhere in this report . 

In the original method a
0 

and a1 were designated variables. I n gen­

eral any two coefficients may be chosen~ To obtain specific equations for 

any two coefficients rearrange the aoove equations with both of the chosen 

coefficients on the left hand side; for example a2 and a
3

g 

2 3 2 [ . 2 n-2 J 
a2 wncpl + a3 wncp2 = -ao- wn a4 wncp3 +···+an wn cpn-1 

2 3 } ·· n-1 
-a2 cp2 wn - a3 cp3 wn = -al + a4 cp 4 wn + • • • + an cp n wn 
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. may be 

where 

These equations are simply simultaneous equations in az and a
3

, and 

solved by 

~2 
a2 = T· 

-2 

A= 
wn cpl 

[w ~ n 2 

the usual determinantal methods, i.e., 

~ a=-3 fl. 

3 
wn cp2 

2 -w cp · n 3 

~ 
2 [ 2 n-2 J 3 

~ = ao -u.~n a4 wn cp3 + ... + a w cp 
1 w cp2 n n n- n 

al + a4 cp4 ~ + · · · + 
n-1 

2 a cp w 
cp3 n n n -w 

n 

2 [ 2 n-2 J -a -w a4 w cp3 + ... a w cp 1 o n n n n n-

If the indicated algebra is performed the desired relationships are ob-

tained, as tabulated in Table 2-1 which follows: 
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(1) 

(2) 

(3) 

(4) 

TABLE I 

Bo - B1 

Bo = [ A2 w! _<P1 (l;:) + A3 w! <P2 (l;:) + ... + An w~ <Pn-1 <C> J 

* B - B 
0 2 

· ' 

••• A wn <P 2 (l;:) J n· n n-

B2 = w~2 <,0;1 (~) [ -A1 wn <,01 (l;:) - A3 w~ <P3 (l;:) - A4 w: <,04 (l;:)-

** Bo - B3 

. • • - A w0 
<,0 ((;) J n n n 

Bo = <P;
1 

((;) [- A1 Wn <,02 ((;) - A2 W~ <,01 (l;:) + A4 ~: <,01 (l;:) + I 

· · · + An w: <Pn-3 ((;) J 
-

-3 -1 [ 2 4 
B3 = -wn cp3 (C) f A1 wn <P1 (l;:) + A2 wn <P2{C) + A4 wn <P4 ((;) + 

* B - B 
0 4 

... + A wn <P (l;:) J n n n 
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S n J As w cps (C) + . . . + A w cp (l;;) n n n n 

(S) B1 - B2 

B1 = - w~1 [ - Ao cp2 (C) + A3 w! cp1 ( l;;) + A4 w: cp2 ( {; ) + ... 

(6) * B1 - B3 

-1 -1 [ 2 4 
B1 = wn cp2 · ({;) - Ao cp3 (i;:) - A2 wn cp1 (C) + A4 wn cp1 ( i;: ) + 

** (7) B1 - B4 

+ An w~ cpn-3(C) J 

B1 = w~1 cp;
1 

(C) [-A
0 

cp4 (C) - A2w~ cp 2 (C) - A3 w! CfJ 1 ( C,)+ As 

S n J w cp1 (i;:) + .•. + A w cp 4 <C> n n n n-
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(8) B2 - B
3 

(9) 

B2 =-w~2 [- Ao cp3 (l;;) - Al wn cp2 (l;;) + A4 w! cpl ( l;;) + As w~ cp2 ( l;; ) + 

... +An w~ ~-3 (l;;) J 

* B2 - B4 

B2 = w~2 cp;l (C) [- Ao cp4 (l;;) - Al wn cp3 (l;;) - A3 w! cpl (l;;) + 

S n J AS w cp l + . . . + A W cp 4 (C) n n n n-

(10) B
3 

- B
4 

-3 -1 [ 2 s 
B3 = wn cpl (C) - Aocp4 (l;;) - Al wn cp3 (l;;) - A2wn ~ (l;;) + As wn cpl 

(C) + • . • +A wn cp 4 '') ] n n n-

B4 - w~4 cp-i (l;;) [- Ao cp3 (l;;) - Al wn cp2 (C) - A2 w! cpl (l;;) + Asw! 

cp2 (C)+ ... +A wncp 3 (l;;) J n n n-

Note: Those with * and ** have singularities at C = 0 and 

C = .S respectively. 

2 - s 



2.3 Discussion . 

The equations of Table I are all of essentially the same form, 

and may be plotted or sketched in essentially the same way. Inter­

pretation of the results is not obvious, however. Certainly if the 

imaginary axis is mapped (~= 0) it should be possible to define stab­

ility from the location of the M-point, but stability has been defined 

pictorially only for the B vs B1 case. Thus the interpretation of 
. 0 

stability and other related topics must be investigated, and this is 

reported in Chapter 3. 

One immediate difficulty appears in the equatio~s for even­

even or odd-odd coefficients, such as B
0 

- B2; B2 - B4 ; B1 - B3; 
-1 

B - B4 . All such equation pairs contain a factor of the form~even (C ). 
0 -1 

Since all such factors contain Cas a factor, then~even (C =0) ~~and 

the equations are uninterpretable. We have not as yet found a fundamental 

explanation of this nor a convenient way out of the dilemma. However, 

it is quite certain that the curve defined by these equations is a finite 

curve, for example any selected point on the B
0 

vs B1 curve for C = 0 

is also one finite point on a B
0 

vs B2 curve for which B1 has the de­

signated value. Further evidence of this was obtained as follows~. 

equations for negative C-were derived and B
0 

vs B2 Mitrovic curves 

were calculated by digital computer for a third order polynomial using 

C = + .003 and+ .001. The results are shown on Fig. 2-1. The grouping 

of the curves is clear evidence that the B
0 

vs B2 curve for C = 0 must 

lie between the C = + .001 curves, and thus must be finite. In practice 

use of a curve for C =0.1 should normally be satisfactory for engineering 

purposes. 

In like manner for certain other pairs such as B
0 

- B
3 

and 

B1 - B4 a factor of ~;1 (C) is obtained, which approaches infinity at 

C =0.5. If other similar singularities exist they have not yet been 

observed. 
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CHAPTER Ill 

STABILITY CRITERIA 

3 . 1 Basic Derivations 

A stability criterion based only on the curve of B - .B o~ the m n 
real two dimensional plane is derived. Any interpretation in terms of a 

phase plot of F (s) on the complex plane is undesired, because the former 

curve is plotted first, and it is more convenient to skip the phase plotting, 

if possible. 

Any polynomial F (s) can be put in the following form~ 

i sj F (s) = f (s) + Ai s + Aj 

which is not zero if s is not a root ofF (s). 

(3 -1) 

Also the same polynomial 

in terms of B. and B. is given by~ 
]. . J 

F (s) = f (s) + B. si + B. sj (3-2) 
]. J 

It must be noticed that this F (s) is zero for any value of s, 

provided Bi and Bj satisfy the relations given already in the Table. 

Thus for these values of B. and B., equations (3-1) and (3-2) combine to~ 
]. J 

F (s) = (Ai- B.) si + (A. -B.) sj (3-3) 
]. J J 

Here s is a complex number 

s=wfrrt2+a n· 
(3-4) 

Substitute this into (3-3), and 

i(wn) =(A1 -.~i) w; /i (w/ 2 + 9) + !A. - B.) u? l j (rr 1 2 + a) 
J J n 

(A. - B.) J ; .. 
J J n J 

(3-5) 

irr ·rr 
of -z + i a and .r;. + j a re-

-+ -+ 
ei and ej are unit vectors in direction 

spectively. 
-+ 

It is evident if the phase plot of F(w ) with regard to w varying 
lill ~ 

from zero to infinity encircles the origin just the angle of n 11 I 2 +n a in 

the counterclockwise direction, that all of the roots have a damping ratio C 
larger than C =sin a. The vector relationship i~ equatio~ (3-5)can be used 

to determine some basic rules for the interpretation of stability on the 

Mitrovic plot. Thes.e rules are developed in the following paragraphs for most 

of the cases listed in Table 1. 
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It should be noted that stability is determined by mappi~g the 

imaginary axis of the s-plane, ie., by the Mitrovic plot for C = o. 
A rule for this case is readily developed. Whe~ designing for good dynamic 

performance the location of the M - point can also determine whether a 
.... 

specification C = C, is satisfied. Rules for this are also developed. 

(1) B
0 

- Bl 

The criterion for this case has been given by Mitrovic for both 

C = 0 and C > 0 c;ases. 

It must be noticed that this belongs to the special group of 

cases where the rule that B = const. must be cut first is valid 

even for C > o. 
Rule~ 

0 

For all of the roots to have a damping ratio C larger than 

sin a' the B = const. line must be cut first. Cutting 
0 

points must lie alternately on B = const. and B = const. 
0 1 

lines, as w is increased fr,om zero to infinity. 
n 

(i) ' = 0 

This leads, 9 being zero, to 

-;1 = /rr/2, ;2 = &__, 
from equation (3-5). 

As is shown in Appendix II, it is valid in any pair that 
.... .... 

1 im F ( w ) = A e" w n o ..... 
(3-6) 

n-+o 
.... 

So the phase plot of F ( w ) starts from A on the real axis 
.... lm 0 

a~ wn = 0, and must cut e, first. This implies 

(3-7) 

at the first cutting, as can be seen from the equation~ 
.... 2-+ .... 
F (an)= ( A2 - B2 ) wn e2 + ( A1 - B1 ) wn e1 .(3-8) 

This is illustrated in fig. 3-2; the provisio~ (3-7) is re­

alized when B
2 

= const. line is cut first. 
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(ii) ' > 0 

(3) B
2 

- B
3 

In this case each unit vector becomes 

-;
1 

= Lrr 12 + a, -;2 = /rr + 2 a. 
.... 

As is seen from fig. 3-3 of the phase plot, -e must be cut 
2 

first. This implies that 

A
2 

< B
2

, A
1 

= B
1 

(3-9) 

This is satisfied only when B
1 

= const. line is cut first as 

shown in the same figure. 

(i) ~ = 0 

For tJl.is case, from equation (3-5)~ 

;2 = Lrr ' ;3 = ~ · 
Therefore the B

2 
= const. line must be cut first as is ex­

plained in fig. 3-4. 

(ii) ~ > 0 

Again applying equation (3-5), where 

.... ·' .... I e2 =r rr + 2 a , ~3 = 3 rr I 2 + 3 a , 
it is easily seen the point cut first lies o~ the direction 

.... 
·· .. vee tor - e

2
, which leads to 

(4) B
3 

- B
4 

Thus it is concluded that B
3

, namely Bodd must be cut first in 

this case also, as shown in fig. 3-5. 

(i) c = 0 

By the same analysis as the previous ones it is evident that 

the B = const. line must be cut first in order to have a even 
stable domain. 

(ii) ~ > 0 

The Bodd = const. line must be cut first. 

For this case equation (3-5) becomes 
.... 3-+ .... 
F(wn) = ( A3 - B3) wn e3 + ( A

0 
- B

0
) e

0 
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(i) 

(ii) 

(i) 

(ii) 

'= 0 I -;3 = /3 rr I 2 , ; =I o . 
0 '-.... 

The phase plot shows - e
3 

must be cut first, which leads to 

A3 <' B3 , Ao = Bo 
This implies, as is ,seen from fig. :3-6, that B

0 
const. line 

must be cut first in B
3 

- B
0 

plane. 

'> 0 
-;

3 
= L3 rr/ 2 + 3 a. -;

0 
= h. 

The phase plot for this case shows that the point cut first must 

satisfy 

A
3 

< B
3

, A = B , 
0 0 

which indicates, in terms of B
0 

- B3 curve, that the B
0 

= 
const. line must be cut first as shown in fig. 3-7. 

Equation (3-5) becomes 
.... 4-+ .... 
F( wn) = ( A4 - B4 ) wn e4 + {A1 -B1) w

0 
e1. 

'= 0 
;4 = 6 = /_g_, ;1 = 11T I 2 

.... 
From the same analysis, it is evident that the e1 line must be 

cut first, which means, in terms of B1 - B4 plot, B4 = const. 
·, 

line must be cut first. 

'> 0 
-;

4 
= L2 rr + 4 a , ;

1 
= frrt 2 + a 

which indicates that the B1 = const. line must be cut first. 

All of the remaining cases in the Table have singularities at C = 0, 

but this difficulty can be avoided by merely starting the value of C from a 

very small quantity. So C = 0 case is dropped here intentionally. 

(7) B - B 0 2 

C'is always assumed to be larger than zero, and unit vectors in 

equation (3-5) become: 

-;2 = /1T + 2 a, ;o = f_g_ 
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(9) 

.... 
Fig. 3-8 shows that -e2 must be cut first, which means, in 

B - B2 terminology, B = const. line must be cut first in 
0 0 

order to make all of the roots have C larger than sin 9 . 

In this case unit vectors of equation (3-5) are 

; 4 = L 4 9 , ;
0 

= &_ . 
Almost the same analysis as before leads to the same con-

elusion: 

pose. 

B = const. li~e must be cut first for our pur­
o 

.... 
Fig. 3-9 shows e1 must be cut fir~t. This is i~terpreted, 

in B1 - B3 terminology, as B
3 

= const. line must be cut 

first for the required purpose. 

The same analysis requires that the B4 = const. line should 

be cut first as the equation (3-5) becomes 

in this case. 

Seeing these rules, it is desirable to classify them into a few 

groups to simplify them, as given in the following. 
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3.2 Summary of Enclosure Criteria -,line cut first and the least ~umber of 

cutting - points 

the line the line 
cut first least number of cut first least tmumber of 

Case I c = 0 cutting poiirnts c > 0 . cutting points 

B - Bl Bo N - 1 B N 
0 0 

B - B B N - 1 B N 
0 3 0 0 

B -1 B2 B2 N - 1 Bl N+ 1 

B2 - B 3 B2 N - 1 B3 N+ 1 

B -3 B4 B4 N - 1 B3 N+ 1 

B -4 Bl B4 N - 1 Bl N+ 1 

These six pairs permit the stability check in its strict sense, be­

cause they have no singularities at C = 0, as has been already explained. 

The next group consists of four pairs, a.ll even - even and odd-odd 

and doesn°t have the stability check in its narrowest sense, because all of 

them have singularities at C = o. 

the line 
cut first least number of 

Case II c > 0 cutting points 

B - B 
0 2 B 

0 
N+ 1 

B ~4 B N+ 1 
0 - 0 

B -1 B3 B3 N+ 1 

B2 - B 
~ 4 B4 N+ 1 

In conclusion it can be said that the line for Beven = const . must 

be cut first when stability is checked in any case. 
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CHAPTER IV 

SKETCHING PROCEDURES 

4.1 Need for sketching procedures. 

Mitrovic 0 s method is a very co~e~ient method as fa~ as calcu­

lations are co~cerned, because it i~olves the use of real ~umbers only. 

Mitrovic visualized use of desh calculators with secretarial type help~ 

or a digital computer, or a~ analog computer. All of these tech~iques 

take .time, a~d while they are acceptable for detailed studies, the e~­

gineer making preliminary studies prefers a tech~ique (such as root 

locus or Bode diagram) which provi4es reaso~bly accurate curves with 

essentially ~o numerical calculations beyo~d formulatio~ of the equations . 

Mitrovic 0 s method will seldom be used for simple problems u~less such a 

facility is available, and if it is ~ot used for simple problems it is 

not likely that the engineer will develop the familiarity needed to 

apply it to more complex problems. Fortu~ately for m~st simple cases the 

Mitrovic curves for C = 0 ~~n be sketched rapidly, and for C # 0 o~ly a 

little labor is i~volved. Sketching was first used in the Elliott, 

Thaler, Heseltine paper, but was not developed as a technique for gen­

eral use. The results presented in this chapter a~e inte~ded to ex-

tend the useful~ess of sketching methods. 

4·. 2 )~asic Manipulations in Sketching The Mitrovic Curves. 

A Mitrovic curve is a plot of two equatio~s with a common para­

meter which is the frequency, w • Si~ce the two equatio~s are known, and n 
since the plot (for sketching purposes) covers the range o< w <+~the 

- !Ill,-

locations of the two extreme e~ds of the curve are easily found by letting 

w = 0 in both equations and w = ~ in both equations. With the two ends n n 
located evaluation of a few selected points on the curve permits sketching, 

and fortunately it is possible to locate maximum and minimum poi~ts which 

indicate the extreme excursions of the curve. Since the equatio~s for the 

two adjustable coefficie~ts Bx , BY (also the coordinates of the plot~ ) 

are known it is easy to evaluate 

dB dB 
__1i = 0 ° ___:f. = 0 
duJ 'dW ' 

n n 
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These equatiorns ~an be evaluat~d fo~ a~y order equatio~s a~d for 

any value of C, but for sketching pu~po~e~ C = 0 i~ usually wa~ted ~i~~e it 

clearly i~di~ates the ~a~ge of values that p~ovide a ~table ~ystemo Co~­

ve~iently the Mit~ovi~ equatio~s have thei~ ~implest algebraic fo~ wh®~ 

C = 0 so that ~umerical formulatio~ of the equatio~ is quite eleme~ta~o 

Next the equatio~~ mu~t be solved fo~ thei~ ro~ts i~ o~der to fi~d the 

values of w at whi~h the maxima a~d mi~ima o~~u~o F~~ c~~a~teri~tic 
~ 

equations up to 5th orde~ ( a~d i~ so~ ~a~e~ to 6th o~de~ } the poly= 

nomials are facto~able a~d the ~esults ~a~ be tabulatedo This has bee~ 

done for a reason&ble ~umber of cas~s a~d the ~e~~lt~ are tabulated i~ 

Table 4-1. Thu~ value~ of w for the ~ima a~d mi~ima fo~ ~~y suitable* 
~ 

combinatio~ of co~fficie~t~, with C = 0, ~a~ be f~u~d by ~efe~ri~g to 

Table 4-1 and i~serti~g the k~owm value~ of the coeffici®~ts i~ th® i~~ 

dicated ~elatio~ships. It is then ~ece~~a~y to retur~ to the o~i.gi~l 

Mitrovic equatio~s a~d substitute each of the values of w ~ thus obtai~i~g 
~ 

the coordi~tes of the maxima a~d mi~ima poi~tso The Mitrovic cu~e fo~ 

C = 0 may the~ b~ sketched by starting at w~ ~ 0 a~d ~o~~ecti~g the k~owm 

poi~ts in order of increasi~ w ~ ~oti~g that ea~h k~owrn poi~t i~ als@ k~~ 
~ 

to be eithe~ a maximum or a minimumo Thi~ procedure u~ually p~ovides adequate 

informatio~ for pr®limina~y a~ly~i~ a~d de~ig~ evaluatio~o Whe~e a ~lightly 

more accurate curve is desi~ed additional poi~t~ may b~ calculated in the 

normal fashio~, with the advantage that the k~own values of w at the max-
~ 

ima and minima guide the choice of additio~al w valueso 
~ 

Whe~ ~urves are desired for C ~ o~ the Sam® sketching p~o~edures 

apply, and Table 4cl also contai~s a number of e~t~ies fo~ evaluatio~ of 

maxima and mi~imao Note that whe~ C ~ 0 the Mit~ovic equ~tio~~ a~e more 

complex algebraically so explicit solutio~s fo~ the ~.ima a~d mi~ima are 

restricted to equations of somewhat lowe~ ordero 

For higher orde~ equatio~s~ while sket~hi~g is still desi~able, 

explicit solutio~s fo~ the ma~ima a~d mi~i~ a~e ~ot availableo However~ 

the general Mit~ovic equatio~~ ~a~ alway~ be differe~ti~ted a~d the diff­

erentiated fo~ are give~ here i~ Table 4-2o These ~£~ always be used to 

find the maxima a~d mi~imao Perhaps ~ simple g~aphical solutio~ f.~ fastest 

and most co~e~ie~t~ the proper equations a~e ~ele~ted from Table 4~2 and 

into each sele~ted values of w ~re i~ee~ted. obtai~i~g values fo~ d B 
• ~ H ~3y 

Q~ 

4 - 2 



'R" 

I Cordinates w=o w=co w or w. .max m1.n 
Highest all 3 4 5 6 7 3 4 5 6 

Order 
Value 

0 0 0 
BO VS Bl of C 

BO 0 + co - co - co +co +co 0 0, JA2/2A4 0, JA2/2~4 . 0, [ { A4 ± )A~-3A2A6 } /3A6]\ 

Bl 0 +co - co - co - co +co 0 0 0, JA3/2A5 0, JA3/2A~ 
i .... 

* 
Continued wmax or w min 
Highest 

7 8 
.J::'- Order 
• Value 

0 
""' of L 

BO 0, l{~4 ±fA~ - 3A2A6 } /3A6 ]\ 
too 
complicated 

Bl 0, [{A5 ±JA; - 3A3A7 }13A7 ]\ 
too 
complicated 



TABLE I (continued) 
I 

Coordinates w= o w=co or w. wmax m1.n 
Highest all 3 . 4 5 6 3 4 5 6 Order / 

Value 
0 0 0 

Bl VS B2 of t • 
Bl 0 + co +co - co - co 0 0 0, JA3/2~5 o, J A3/2A5 

; 

"' (A /A )v4 (A /A4)}. B2 +co 0 +co + co, - co CD too complicated 
0 4 0 

.p. Coordinates w= o w=co "'i~ax or w. m1.n 
Highest all 3 4 5 6 3 4 5 6 Ofder 

.J::--

Value 
0 0 0 B2 VS B3 of C 

B2 +co 0 +co +co - co +co . (Ao/A4)\ (Ao/~4)\ too complicated 

B3 + co 0 0 +co +co +co + co (4
1

/AS)\ (Al/A5) Jr. 



TABLE I (continued) ... 

Coordinates w= o w = 00 w or wmin 
-

max 
' Highest all - 4 5 6 - 4 5 6 

Order I 

Value -

of C 0 0 0 
B3 VS B4 

B 3 +00 0 + 00 +00 00 (Al/ ~s>~ (Al/ As)~ 

B 4 - 00 0 '-0 +00 .Jz A
0

/A2, oo Jz A
0

/A2, oo too complicated 

~ 

Coordinates w= o w = 00 w or w 
max min 

V1 Highest all 3 4 6 4 
-

5 6 5 ~ 3 Order . 
Value 0 0 0 BO VS B3 of r I 

.. 

B 0 0 +oo - 00 - 00 +oo 0 0, JA2/2 A4 0, JA2/2 A4 too complicated 

B 3 +oo 0 0 +oo +00 00 00 (A
1

/A
5

) ~ (Al/AS)~ 
--- ~-------



--

coordinates w- o w or w 
max mn 

Highest all 4 5 6 4 5 6 
Order 
Value , 0 0 0 

Bl VS B4 of C 

B 1 0 +to - co - co 0 0, 'JA3/2A5 0 , J A3/2A5 
_1 

B 4 - co 0 0 +co J 2Ao/ Az' co J 2Ao7 A2' co too complicated 
I 

' '' 

""' 

* 
Coordinates w= o w = co w or w. 

i max m1n 
Highest all 3 4 3 

.p. Order 
I - Value 

o <C ~l l- 0 <l;:~ o.s o.s <C~ 1 o<c~ 0.5 o.s <C < o. 11 o. 7l~C ~1 
C\ BO VS Bl of C I . 

-
B 0 0 - co - co •co +co +to 0,2A2/3A:f 2(C) 

B 1 0 +ao - co I - co - ao +ao -AtJ2 (C)/A§J3 (C2 

.. 

·'II' 
~ 



-

- " 
Continued w or w max min 
Highest 4 

Order 
Values 
of C 

B 0 9, {-3A3 cp 2 <C> ± J9A~<P~ <C> + 32A~4 cp 3 (C) }taA4cp 3 <C> 

B 1 { -A3 cp3 (l;:) ± jA~ cp;(l;:)-3A2A4 cp 2(l;:) cp 4 (C) } 3A4 cp 4 ((:} 

..... 

~ 

Coordinates w= o w=co w or' w . 
max m~n 

Highest 
~11 3 4 3 4 Order 

-...J 

Values 
o<C~l o <C ~1 o <C~o.s o.s <l;:~l Bl VS B2 of C 

B 1 + co +co - co - co (Ao cp 2 (') /2A3)~/3 too complicated 

B 2 +c:o +co +co - co (2A I A <P ({;) 1/3 too complicated ! 

~- -~ -~---

-- __ 0 __3__2_ __ --- -- -- ------- _ _j 



Coordinates w= o w== w or wmin I max 
Highest all 3 J 4 3 4 

Order. 
Values 0 <t ~0.5 0.5 <t ~1 o <C ~1 o <C ~1 B2 VS B3 of C 

B 2 += - ao 0 += -2Ao cp3(~)/Alcp2('(.), ao too complicated 

B 3 - ao - ao 0 += 3Ao cp2 (~)/2Al' ao too complicated 

~ 

* 
Coordinates w= o w== 

.p. 

I 
Highest all 4 5 

00 
Order --
Values 

o <C ~o.5 o.5 ~c < o. 11 o. 71 ~' <1 o < C~l o <C~ 1 B3 VS B4 of C 
B 3 - ao - ao += 0 += 

' 

B 4 - ao += += 0 + ao 
-- ~-~- -~-- - - - --- - -



Continued wmax or w. m1n 
Highest 4 5 
order 
Values 
of 

B 3 -.2A1 cp 3 (C) ±JA1P;<C)-3A
0
A2 cp 2(Z:) cp3 (C) /A2 cp 2(C),= too complicated 

B 4 , 3A1 cp 2 (Cl ± J9A~ cp~(C)+32 A
0
A2 cp3 <C>} /4A2 

Q) too complicated 

..... 

""" - --
Coordinates w= o w or w. max m1n 

. -
Highest 

all 
-

4 ~ Order 3 I 

I Values 
\0 BO VS B3 of r o <Z: <o.5 0.5 <Z: ~1 o <C<o.5 o.5 <C ~1 o <c <o.5 o.5 <Z: <o. 71 o. 11 ~c ~ 1 

B 0 0 0 += - Q) - Q) + Q) += 

B 3 += - Q) - Q) - Q) += - Q) += 



~ 

........ 
0 

-
Continued wmax or 

H!~hest 3 --
Order 
Values 
of C 

I 

B 0 . Al cp2('(J/2 A2 0 

B 3. 2 A1/A2 cp 2 (C) ,(J) 
~ 

Coordinates 

Highest 
Order 
Values o <C <o.s Bl VS B4 of r 

B 1 +(J) 

B 4 - (J) 

w. m1n 
- 4 

too complicated 

too complicated 

-w= ·o w=(J) w 1nax w. or m1.n 
•• -4-.- -·· -. -·----- - ·- ·-- . 

all 4 4 

o.s <~ < o. 71 o. 11 <C <1 o <C < o.s o.s <C· <1 
-

- (J) +(J) +(J) - (J) too complicated 

+(J) +(J) 0 0 too complicated 
~~ -~ -



~ 

..... ..... 

I 

TABLE I (continued) 

Coordinates w= o w =(II) 

Highest all 3 Order 
Values 0 <(:~1 o <C <o.s o.s~c ~1 BO VS B2 of C 

B 0 0 - (II) - (II) 

B 2 (II) -(II) +(II) 
-L---.-- ----

~ 

* 
I 

Continued w or w. max m~n 

Highest; 
3 4 Order 

Value 
of C 

B.9_ Al cp 2 ('(.) /2A2 too complicated 

B2 2 Al/A2 cp2 (C)' oo too complicated 
- ----~--- --

~ 
I 

! 

4 

o <C ~o. 71 o. 11 <C.~l 

+OO +(II) 

+oo - (II) 



.p. 

.... 
N 

TABLE I (continued) 

Coordinates w= o W=oo 

Highest all 3 4 Order 
Values o <l;: <o.s o.s <<; <1 o <C~l o <C <o.s 0.5~~1 o <C~o. 71 Bl VS B3 of C --....... 

Bl - 00 + co +00 - 00 - 00 +00 

B3 - 00 - 00 0 - 00 +00 +oo 
- -

' 

* 
Continued w or w i w or wmin max m n max 
Highest 3 4 5 Order 0 

Values 
of C 
B 1 JAo cp3('C;)/A2 [ {~2 ±)A~ + 12 A

0 
cp3 (C)} /6A4] l/2 too complicated 

B 3 • ,/3A
0

/A2, oo [ { 1 z } · Jl/2 -A2 ±"" A2 - l2AoA3 <P3 ( ' ) /2A4 too complicated 

* 

5 

o. 11 <C ~1 

+00 

- 00 

' 



.p. 

... 
\.,.) 

Coordinates 

Highe~st 
Order 
Values 

B2 VS B4 of C 
B2 

B4 

Coordinates 

Highest 
Order 
Values-

BO VS B4 of C 

BO 

B4 

w= o 

all 

o <C ~o. 71 o. 71 <(:~ . 
+CD - CD 

+CD +CD 
- -- -~---

..... 

w= o 

all 

-
o <C<o. 71 o. 71 <C~l 

0 0 

- CD ~ 

I 

W=CD w or w i 
i 

max m n 

4 4 

o <C ~1 

+CD too complicated 

0 

* I w = CD 

4 5 

o <c<o. 11 o. 71 <C~l 
I 

o <c<o.Jl o.3l~C<o. 71 o.11 <C~l 
--

+CD - co - CD - CD +CD I 

1 l 0 0 - CD +CD +CD 
~--- ------~ .~ 1..-.------ -- . -- - L-.-



+"-

..... 
+"-

* TABU!; 1 ~continued) 

Continued "'1nax or wmin 
Highest 

4 Order 
Values 
of C 

BO {A
0 

cp 2 (l;:) ±)A~ cp~ (C) + 3A1A3 (C) } /3A3 

B4 { -A__z cp2(~) ±JA~ (~) +~Al __ ~3~3~C}}A3 cp~<_~) 
---~----~ 

I 

5 
! 

I 
I 

too complicated 
! 

too complicated I 

! 



at selected w values . 
n 

dB dB 
A plot is then made of d~ vs wn and ~ vs Wn . 

Each curve crosses the w axis at values of w corresponding to the maxima 
n n 

and minima. 

4.3 Tabulation of Results and Suggested Procedures. 

(Tables containing useful relationships are collected in the pages 

following. 

Suggested Procedures: (these are largely a summary of the discussion 

in section 4·. 2) 

1. 

2. 

3. 

4. 

5. 

From the characteristic equation determine the desired Mitrovic 

equations for ~ = o. 
Substitute in these equations w = 0 and w = lXI to locate the n n 
ends of the curve. 

Inspect the Mitrovic equations to see if a ready solution exists 

for zero points; ie., for what values of w are B = 0, B = 0? n x y 

Obtain the equations dBx = 0, ~ = 0 and solve for values 
~ dWn 

of w . 
n 

Substitute the values obtained in 3 and 4 into the Mitrovic 

equations to locate the B , B coordinates. 
X y 

6. Plot the known points and sketch the curve. 

4.4 Illustrations of the Sketching Techniques 

Example I 

For a third order equation B
0 

vs B1 , ~ = 0 

3 2 
F ( s) = s + 2 s + B1 s + B 

0 

'= 0 

(4-1) 

From the relationships in the table, B
0 

and B1 are both equal to zero at 

w= o; they have no maximum or minimum points; both end in+=. Thus for 

equation 4-1, a sketch of B
0 

- B1 c_urve is shown in Fig. 4-1. Notice: 

all of the roots of F(s) have a damping ratio ' ~ 0.5 if B
0 

= 1, B
1 

= 2. 
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TABLE 4 - 2 

DIFFERENTIATED FORMS OF MITROVIC 0 EQUATIONS 

FOR USE IN EVALUATING MAXIMA AND MINIMA 

BO VS B2 

d B 1 
d W = A2cp2 (') + 2 A3 cp3 (~) W+ 0 0 0 + (n-1) A cp (~) uf-2 

n n 

BI VS B2 

d B 1 
dw 

B2 VS B3 

d B 2 1 1 
d w = -2 A

0 
cp3 (C) (;} -A1 cp 2 (C) vJ. + 2 A

4 
w + o •• + (n-2) 

n-3 
An cpn-3 (C) w 

d B 3 1 1 
d w = 3 A0. cp 2 ({:) --::f -2 A1 -:J + A4 cp 2 ({:) + o. o + (n-3) 

A cp wn-4 
n n-2 

B3 VS B4 

-
d B 3 3 A <"> 1 4 2A (Y') 1 -A ' <P <C>:...L2 + 2A5(J.)- ••• 

d w = - 0 cp4 ~ w - 1 cp3 ~ (;} 2 2 w 

.-d...;:B~4 = 
dw 

~(n - 3) A, cp 
4

(C) w0
-
4 

n n-

4 - 16 



BO VS B3 
TABLE 4-2 (Continued) 

B1 VS B4 

BO VS B2 

ddBwO ~ cp)C) [ Al •3 Al W2 + 4 A4 cp2 (C) W3 + ••• + n An.<Pn-2 

(C) wn-1 J 
d B 2 = -1 [ A1 

d w <P
2

(C) 'w2 + A3 <P3 (C) + 2 A4 <P4 (C) w + ... + (n-2) 

An <Pn (l;:) wn-3] 

B1 VS B3 

d B 1 = 1 [ A <P (C) 1 + A 3 A 2 4 3 
d w <P 2 <C) o 3 w2 2 - 4 w + As <P 2 (C) w + . . . + 

(n-1) A r.p (l;:) wn-2 J 
n n-3 

d B 3 1 [ 4 A A2 
d w = <P

1 
<C> w4°- w2 -A4 <P3 <C> - 2 As <P4 (C) w- ••• -(n·3) 

An <Pn-1 (C) wn-4 J 
4 - 17 



B2 VS B4 
TABLE 4-2 (Continued) 

d B 2 1 
[ 2 Ao cp 4 (') + + A1 <P3 (l;;) _!_ 

dW = (n-2 ) 
cp2 (C) 

+ 0 0 0 + 
w w2 

An cpn-4 (C) wn-3 J 
d B 4 = 1 

[ -4 A0.<P 2 <C> ~ + 
3 A1 A3 

dW <P2<C> ~ 
--- o • o- (n-4 ) 

ul-
A cp (C) wn-S J 

n n-2 

BO VS B4 

d B 0 1 
[ A1 cp3 (C) + 2 A2 cp2 (C) w -3 A3 w2 + S AS w4 dw = cp 4 <C> 

n-1 J 
- • o o - n A cp 4 (C) w n n-

d B 4 1 [ 3 A1 1 
dw = - -- + 2 A cp <C> _1_ -+: A3 <P3 cp 4 <C> vi+ 2 2 w3 (C) ul- ·As <Ps (C ) 

o •• - (n-4) A cp (C) wn-S J 
n n 
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F(s) = s3 + s
2 + 2 s + 1 = (s + 1) (s

2 
+ s + 1) 

s = -1, - 1 ± j ,JJ-
2 

Example II 

For a fourth order equation B vs B
1

, ~ = 0 and ~ = 0.2 . 
4 3 ° 2 F ( s) = s + 4. 2 s + 6. 6 s + B1 s + B 

0 

For ~ = 0, 
2 

B =A w 
0 2 

2 
Bl = A3 W 

(4-2) 

The table indicates thatboth B and B
1 

begin from zero; B ends at -= ; 
o I 4 o 

whereas Blends at+=; B
0 

has a maximum at w= ~A2/2A Also equation 

(4-2) indicates that B
0 

= 0 at W
0 

= JA2/A4 • Thus 

w for B = J6.6/2 = 1.8 max o 

w = J6.6 = 2.6 
0 

B {1.8) = 10.9 
0 

The curves are shown in Fig. 4-2. 

For ' = 0.2, 

Bl (1.8) = 13.9 

Bl (2.6) = 27.7 

Bo = A2 w2 - A3 cp2(~) w3 - A4 cp3 (') w4 

2 3 B1 = A2 cp 2(C) w + A3 cp3 (C) w + A4cp4 (~)w 
(4-3) 

The table·'·s indications are: both B
0 

and B1 are equal to zero at w = 0; 

both B
0 

and B1 are equal to-= at w= =, if'= 0.2; each curve may have 

a maximum. The numerical values of the cp(C) functions are: 

cp2(0.2) = 0.4 

cp 3 ( 0. 2) = 0. 84 

cp 4 (o. 2) = -o. 736 

The positive values of w in the table are the only ones which can make 
max 

B
0 

and B1 maximum, and they are: 

4 - 19 



w for B max o 

= •3 X 4.2 X 0.4 + J(3 X 4.2 X 0.4)~+ 32 X 6.6 X 0.84 = 
8 X 0.84 

wmax for B1 

= •4.2 X 0.84 • ~(4.2 X 0.84) 2 + 3 X 6.6 X 0.4 X 0.736 = 
•3 X 0. 74 

= 3.5 

The corresponding curves are shown in Fig. 4-3. Notice: all of the roots 

of F(s) have a damping ratio C ~ 0.6, if B0 = 2, B1 = 5.4. This point 

(5.4,2) is shown, in B0 - B1, curves for C = 0 and C = 0.2 , to be in the 

enclosure. 

Example III 

For a fifth order equation, B0 vs B1, '= 0 

5 4 3 2 F(s) = s + 7 s + 18 s + 23 s + B1 

B =A w2 
- A w4 

0 2 4 

Bl = A3W2 - A5W4 

s + B 
0 

(4-4) 

According to the indications of the table , both B0 and B1 are zero at w= o; 
B = B = -co at w = =; each has a maximum at 

0 1 

wmax (for B0) = JA2/2A4 = J23/14 = 1. 3, 

wmax (for B1) = JA3!2A5 = Jl8/2 = 3. 

Equation 4-4 shows that B0 is zero at w
0 

= JA
2

/A4 = 1.8; B
1 

is zero at 

= )A3/A
5 

= 4.2. Thus: 

B 0 

B 0 

B 0 

. B ,_ 0 

(1.3) = 18.9 

(3) = -360 

(1.8) = 0 

(4.2) = -1854 

Bl (1.3) = 26.8 

Bl (3) = 81 

Bl (1.8) = 48.3 

Bl (4.2 = 0 

w = 
0 

The curves are shown in Fig. 4-4. Notice: All of the roots of 
> F(s) have a damping ratio C = 0.5 if 

B = 6 
0 

B = 17 
1 
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This point (17,6) is shown in Fig. 4-4 to be in the stable domain. 

Example IV 

For a seventh order equatio~s B
0 

vs B1, '= 0 

7 6 5 4 3 2 
F(s) = s + 9 s + 33 s + 66 s + 81 s + 63 s + B1 s + B0 

2 4 6 
B

0 
= A2w - A4w + A6w 

2 4 6 
Bl = A3w - A5w + AfJ 

(4-5) 

Table 4.1 shows that both B
0 

and B
1 

are zero at w = 09 B
0 

= B1 = c:o at w = c:o9 

both ~an have one maximum and one minimum» but are not required to have such 

singular points other than at w= o. 
Table 4.2 shows: 

d B 
4A4w3 + 5 0 2A w---= 6A

6
w 

dw 2 

d Bl 
2A

3
w- 4A

5
w3 + 6A~5 dw = 

For thi·s case B 0 has three real roots» 
0 

(4-6) 

w = o, w2 = 132 ± /(132) 2 - 4 x 27 x 63 = 4.2 a~d 0.55 
54 

, 
w= 0, 0.74, and 2.05 •. B

1 
also has three real roots; w= o, 1.15, and 4.5. 

The curves may have a shape as in Fig. 4-5. From these, the shape 

of n - B1 is apparent from the sequence of frequency for the maximum, min-.o 
imum and zero points as shown in Fig. 4-6. Note that either (a) or (b) sketches 

are possible, because the magnitudes of B
0 

and B
1 

have ~ot been calculatedo 

If the critical values of W are substituted i~to the B
0 

and B1 equations, the 

coordinates of the points hre determined and the sketch can be made accu-

rate. Thus 

w o. 74 2.05 1.15 4.5 

2 0.55 4.20 1.33 20.7 w 

w4 0.30 17.65 1.77 428 

6 
0.16 74.1 2.35 8870 w 
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and the coordinates of the critical points are: 

Thus, the 

the roots 

B (0. 74) = 172 
0 

B (1.15) = •15 
0 

B (2.05) = -237 
0 

B (4.5) = 52905 
0 

B1 (0. 74) = 35 

Bl (1. 15) = 48 

B1(2.05) = -170 

Bl (4.5) = -3553 

B vs B1 curve is shown to be as in Fig. 4-7. Notice: All of 
0 > 

of F(s) have a damping ratio C = 0.5, if B1 = 29, B
0 

= 6. 

F(s) = s1 + 9 s 6 + 33 s5 + 66 s4 + 81 s3 + 63 s
2 

+ 29 s + 6 

= (s + 1)2
(s + ) 2 

(s + 3)(s2 + s + 1). 

This point (29.6) is shown to be inside the stable domain. 

Example V 

For the fourth order equatio~, B2 vs B3 ~ C = 0. 

4 2 2 
F(s) = s + BJ s + B2 s + 5.4 + 2 

B =A - 1- +A w2 
2 0 2 4 w 

A 
1. 

B3 = 1~ 
w 

(4-6) 

The indications of the table are that both B2 a~d B
3 

are= at w= 0; B2 = =, 

B3 = 0 at w = =; B2 has a maximum at 

Thus: 

w= (A /A )1/ 4 = (2) 1/ 4 = 1.18 
0 4 

B2 (1.18) = 2.82, 

B
3 

(1.18) = 3.83 

and the curves are shown in Figs. 4-8 a~d 4-9. Notice all of the roots of 

F(s) have a damping ratio C ~ 0.6 is B
2 

= 6.6, B
3 

= 4.2 

F ( s) = s 
4 + 4. 2 s 3 + 6 . 6 s 

2 + 5 • 48 + 2 

= (s + 1) (s + 2) (s2 + 1. 2 s + 1). 

The point (4.2, 6.6) is shown in the graph to be lying in the stable domain. 

Example VI 

For a fifth order equation~ B1 vs B2» C = 0 
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F(s) = s 5 + 7s
4 + 18 s

3 + a2 s
2 + B1 s + 6 

2 4 
Bl = A3w - A5w 

(4-7) 
1 2 

B2 =A 2 + A4w 
0 w 

The table shows that B
1 

= ?' B
2 

= + CD at w = 09 B1 = -=, B2 = + CD at w = CD; 

B
1 

has a maximum, and B2 has a minimum at~ 

wmax = ,j A3t2A5 = ,./18/2 = 3 

w = (A /A ) 1/ 4 = (6/7) 1/ 4 = 0.96 min o 4 

Equation 4-7 shows that Bl is zero at 

w
0 

= JA
3
)A

5 
= 4.24 

Thus, the critical points are at~ 

B1(0.96) = 15.7 

B1(3) = 63.6 

Bl (4.24) = 0 

The curves are shown in Fig. 4-10 

Example VII 

B2 (o.96) = 12.9 

= 6Jo6 

B2 (4.24) = 126.3 

For a fourth order equation, B1 vs B2» C = 0.6 

4 3 2 F(s) = s + 4q6 s B2s + B1 s + 2 

1 2 3 
B1 = A

0
cp 2(C)w + A3w • A4 cp2 (C) w 

B2 = A
0 

1
2 + A3 fP 2(C) w + A4 fP3 (C) w2 

w 

(4-8) 

Table 4-2 gives the followi~g equations, if the correspo~ding values 

of~ andcpk (C) are substituted; 

d Bl 1 3 4 
~ ~ (2.4 9.2 w + 3.6 w) 

w 
(4-9) 

1 3 4 - w3 (4-5.52 w + o.88 w) 

From the Table 4-1, it is seen that B1 = B2 =+CD at w= o; 
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B1 = B2 = -co at w = co. When C = o. 6 ~ the maximum or minimlDD frequency is 

not available through the routine methods. Even their existence is not 

readily checked. 

Equation 4-9 can be used to improve the situatiolm. It is seen 

from figure 4-11 that there may be two points where the differen~e of the 

curves is just 2.4, since by the differential calculus it is easily shown 

that the difference between the two curves attains its maximum value of 

16.3 at w= 1.91. So there must be one frequency before 1.91, and an­

other after 1.91, which realize these conditions. It is rather easy to 

find these values by trial and error~ and they are found to be~ 

w = 0. 7 and 2 • 5 

By reasoning of the whole figure, the smaller one must be the minimum 

point, and the larger one the maximlDD. 

Through the eame analysis applied to the other equation of 

4-9, it is seen that w= 0.95 and 6.2 are the required ones. Thus, this 

second relationship provides Fig. 4-12. Bi and ~; are then plotted as in 

Fig. 4-13 and the Mitrovic curve is sketched in Fig. 4-14 

If the critical values of w are substituted into equation es), 
the graph becomes more accurate a 

B1(o.7) = 5.21 B2(o.7) = 7.65 

B1(o.95) = 5.51 B2(o.95) = 7.05 

B1(2.5) = 11.22 B2(2.5) = 11.3 

B1(6.2) = -109 B2(6.2) = 17.4 

These are dQduced by using the table~ 

w 0.7 0.95 2.5 6.2 

2 0.49 0.90 6.3 38.4 w 

w3 0.34 0.86 15.6 238 

1/w 1.4 1.0 0.4 0.161 

l/w2 2 1.1 0.157 0.026 
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A more accurate sketch. of the B1 vs B2 cu~e is the~ available~ as shown 

in Fig. 4-15. Notice: All of the roots of F(s) have a damping ratio 
> C = 0.8, if Bl = 6.2, B2 = 7.8. 

F(s) = s4 + 4.6 s3 + 7.8 s
2 + 6.2 s + 2 

= (s + 1) (s + ) (s
2 + 1. 6 s + 1). 

This pair is shown to be in the enclosure» as should be. 
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Figure 4-5 

(a) (b) 

Figure 4-6 
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Figure 4-13 
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CHAPrER V 

THE DIGITAL COMPUTER PROGRAM 

The aims of the present programming are: 

(i) To print out the calculated values of any pair of Be and 

B : m 
(ii) To make a graphical plot of this pair on section papers for 

each value of C· 

The first is done by the usual digital machine, and the second is 

done by the digital analogue converter attached to the system. 

Some safe-guard statements had to be included in the programming 

owing to the generalization of applicability to any pair, in addition to the 

original purposes of getting graphs and calculated results for varying C· 
These will be shown in the next section. 

The practice of programmingg 

What is needed to run the machine is just to punch the cards according 

to the indication shown in the beginning part of the programming: 

1) User's name and program identification: 

2) Output specification, 

Blank card is f~r the case both print and graph are re­

quired. 

Punch "graph~' if graph only is required. 

Punch "print" if print only is required. 

3) Order of equation. 

4) Coefficients of equation, A .•. ,A, including the A 
o n e 

A which are assumed to be variable. m 
5) Values of e and m, such as 1 and 2 for B1 - B2 case. 

The values of B and B vary in two ways: e m one, through the 

changing value of C, and another, through w. 

and 

Usually there are no difficulties in changing the values of C 
from 0 to 1 by an arbitrary chosen step if the difference of e and m is 

not even. If it is even, B values become infinite and the machine stops, 

as C takes the value zero. The same situation occurs if the difference is 

a multiple of three when C is equal to 0.5. These difficulties are auto-
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matically avoided by making the machine choose the adequate starti~ values 

and step width of ~ in the programmi~g. 

The problem of how to find out the proper upper limit of w comes 

next. It seems very logical to set the limit arou~d the value of w which 

makes the last term of each B dominate, or become larger than the sum of 

other terms, since this actually assures that the cu~e B - B is plotted 
(§ m 

into the last quadrant where it ends at w= i@fi~ity. This is also necessary 

from the practical point: It sometimes occurs i~ certain pairs of Be and 

B with certain values of C that the curve re-appears in the first quadrant 
m 

at the larger frequencies and divides the e@~losu:!ke or ~~.able domai~, amd 

changes a part of it to lie out of enclosure or unstable . Rather a le~gthy 

part is spent in the programming to secure the effe~tive results. But in 

many cases, the plotted graph of B - B becomes i~accurate by extending e m 
the value of w this much, though the graph scal i~g is automatically set for 

each value of ~ in order to get a full resolution, since the values of them 

at the start and at the end differ tremendously. On this occasio~, it is 

rather recommended to try to set the upper limit of w to just half of the 

value indicated by the machine. This decreases the values of the highest 

B and B to nearly one-sixteenth in the case of fourth order equations. 
e m 

It is a good practice to decrease the values of w after getting the printed 

results to get graphs with better resolution whe~ever it is necessary. It 
' ~- 1 • also improves the start1ng part of the printed results, and thus sometimes 

shows the maximum or minimum at the very lower freque~cies hidden in the 

original setting. Anyhow, it is necessary to know the tende~cy of the 

curve at W= 0 and at .w ==for correct understanding of the results, and 

it is very easy to get these knowledges by a gla@ce at the B - B equa-. e m 
tiona. 

To improve the printed results is easily done by omitting certain 

statements which are inserted . to make. the . nm~hiltlle pri!Tht out only. every terith 

out of the 900 .calculated results in th~ m~mo:ry bo~ tequired fpr tb.e graph. 

It may be said that many practical applications come out of this 

programming, and if some applications are beyond the present programming, 

it may be easily attained by just manipulating a few statements~ Fo:r an 

exampl~, if the behavior of the curve of B2 - B
0 

at C = 0 is needed, it is 
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easily attained by making the starting value of ~ negative and the ending value 

positive just around the origin and thus getting the full account of the curve 

tendency there. Actually just two statements, namely, statement 74 a~d 49 are 

to be manipulated in this case. 
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CHAPTER VI 

A PROCEDURE FOR COMPENSATION DESIGN 

6.1 Cascade Compe~sation 

Throughout the procedure of compe~satio~ desig~ give~ here » K 9 v 
K , or K is assumed to be the same as the original system. 

a p 
It is assumed that a system with a transfer function 

m 

Ko i~ (s + zi) 
G (s) = N n 

u s i!ll ( s + pi) 

is to be compensated by a filter with 

Kc s + z 
Gc (s) = s + p 

to have C > C . Then the characteristic equation is 
- 0 

+ Al (P, K } s +A (P» K ) = 0 c 0 c 

Actually the last term is 

A (P, K ) = K D p 
0 c 0 

as K 's are constant. v 

(6-1) 

(6-2) 

(6-3) 

It is very remarkable that any of Aa (P) and A~ (P» Kc) is a 

linear functio~ of P and P and K • (This can be seen easily.) This im­
c 

plies that the gradient of B or B has some value indepe~de~t of the value e m 
of P, determined only by values of C and w ~ and B and B a~e both linea~ly 

• ll1\ e m 
expressed in Aa and A{3. This is seen as follows: 

Be (P,K) =. 1; k, cpi (l:) w! A. (P» K) c 1, J, "'"' -K. c 

Bm (P,K ) = ~ cp"' (C) W~ A, (P 9 K ) 
c a,b,c ~ "'"' ~ c 

(6-4) 

The effect of the change of P and K values, fixi~g C and w is shoWll'l\ as: 
. c ~ 

·co~· o~ J l.l B =. ~ cp. (C) WJ -'::1. - l.l. P + .;--K /.l. K 
e 1 ,J,k 1 n o p o c c 

b o. A o. A ( 6 -S ) 

6 B = ~ I cp (C) wn [ r A p + a· K c ~ Kc J 0 

m a,b,c a p c 
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So k and A are all linear in P and K a it is see~ that both A B , and -lk c· c q e 

A B depend only on the differences of P and K • 
m c 

Also it is seen that 
oA e 

A Ae = o P 

o.A. 
!::.. A = __!!! 

m o p 

oA 
e 

A P + oK 
c 

oA m 
A P + o•K 

c 
~, K c 

(6-6) 

If an arbitrarily chosen P and K make the M (A , A ) point lie 
c e m 

on or inside the Mitrovic curve B - B with specified t = C ~ a desired 
e m . o 

damping has been obtained and the design procedure e~ds. But this seldom 

occurs in involved problems. In such cases P and K must be varied so as 
c 

to make a new Mu (Au~ Au) point lie o~ or i~side the new Bu - Bu ~urve. 
e m e m 

This is attained by making, at a certai~ value of w , say at w = w Mu n ~ o' 
locus cut Bu - Bu curve. This is mathematically shown as 

e m 

where 

Au = Bu 
e e 

o A 
Aa =A + __ e 

e e o· p 

o A 
A' = m 

Am+~ m 

Bu = 
e 

o- Be 
Be+~ 

0' A e !::..K !::..P+a:K c c 
o A AK m 

~P+~ c 

o. Be 
e AK !::..P+~ c c 

B u = B + 0 Bm A P + 0 Bm A K 
m m ~ ~ c 

c 

~6-7) 

(6-8) 

All A , A , B a~d B are previously calculated numbers. Trial values · 
e m e m 

of P and K determine them. Substituti~g (8) into (7), 
c oB oA OB oA 

Ae- B = .6..P(--e- ----!) + AK (--e- __ e) 
e op op c oK oK 

c c 

o B ' o A o B ' o A ~6"" 9 ) 
Am - Bm = ~ p ( o p m - o p m ) + !::.. Kc ( o K m "" o K e ) 

From this AP and !::..K are given by c 
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AP = D 
_E. 

D (6-10) 
AK = DKc 

c 
D 

where oB oA oB oA 
D = ( o : - o :) ( ~ Km - o K e) 

~ c 

(~ _ o Ae) 
o K o K c c 

D = ( o B o A ) ... C ( o Be - 0. Ae ) 
p Ce o Km- o Km m o K o K 

c c c c 

C = A - B e e e 

C = A - B m m m 

It must be remembered that all of the tenns in a.ey bracket a%'e Jmumbers 

as C and w are specified. 
n 
Finally, if the newly found P0 a~d K~ ~ 

po = p + ll p 

K~ = Kc + ll Kc 

are physically acceptable, namely both P0 a1md K0 are positive a~d the mag­
e 

nitude of K is reasonable, then the design is completed and z is found to c 
be z = P 0 /K~. If the solution is not acceptable this simply implies that a 

c 
multiple section filter must be usedo 

lf this happens, one tries to find values of P a1md K as favorable 
~ 

as possible for the tirst stageo The ~ext stage is just a repetition of 

the procedure given hereo This process can be carried on until the sp~c­

ifications are met. 

It also must be noticed that although the above mentioned method 

is very general, it is sometimes found that a simpler treatment is applicable 

and preferable. 

If the order of the whole compe1msated system is high so as to have 

more than one pair of complex co~jugate roots whose real parts are in the 
' .·· 

same order of magnitude, the above mentioJmed procedure must be followed 

rather strictly. 
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But if it is known that there i~ ju$t one pair of ~omplex co~­

jugate roots, or of dominant complex co~jugate roots~ the~ more simplified 

procedure. is applicableo 

In this occasion it is justifi~d to lo~ate M (A ~ A ) poi~t o~ e m 
any part of the B - B curve in the fi~~t quad~a~to It is ~ot ~cessa~y e m 
to place them on or inside the enclosure pa~t of the ~urveo The~ the 

problem degenerates to just fi~di~g out the values of P a~d K whi~h m2kes 
c 

A = B e e 

A = B n m 

~ (P, Kc) takes the followi~ fo~g 

~ (P, Kc) = ak P + f3k Kc + Yk~ 
11· .. 

where ak' 13k' and yk are all given real ~umberso 

If (12 and (4) are substituted i~to {11) it gives~ 

P (ae- ~~i(l;:) w!ak) + Kr; tffle- ~~io:> ~f3k) 

= I; ~i (l;:) ~ y ... y n e 

If C and w are specified by some design requirements 8 all coeffi­n. 
cients are fixed in (6-13) and the~ equations become simultaneous equations 

of P and K : c 

Ml p + Mz Kc = Nm 

whose solution is 
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Here 

L = 1 ( cxe - I; cp i (l;:) w! cxk) 

L = 2 ( f3e .. I; cpi (l;:) ~ f3k) 

~= ( ex - I; cp (l;:)t wb ex ) m a n c 
( 6-16) 1 

~= ( f3 - I; cp, (C) wb f3 ) 
m p n. c 

N = e ( I; cpi (C) w! Yk- Y e) 

N = ( I;cpa(l;:) w! Y c - ym) m 

If the values found for P a~d K are physically realizable & then 
c 

the design is completedo If it is not the case, then C or w may be varied , n 
to find the acceptable values, in case such change of values of C or and 

w are permittedo If it is not permitted,-then multisection compensation 
n 

is neededo 

Example 6-1 

420 
Gu(s) = s(s + l)(s + 15) 

is to be compensated to have C > Oo6 by a cascade filtero 

Solution: 

K (s + z) 
Gc(s) = (s + P) 

Characteristic equation is~ 

s4 + (16 + P) s3 + (15 + 16 P) s 2 + (420 K + 15 P) c 
s + 420 p = 0 

B1 - B2 equations for C = Oo6 are~ 

B = lo 2 (420 P) + (16 + P) w2 .. lo2 w3 
1 w n K1l. 

n 

A = 15 P + 420 K 1 c 
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A = 15 + 16 P 2 
w = o. 7 is tried: 

n 
Al = Bl _.. 

A2 = B2 

p = 0.0034 

K = 0.024 c 

z =__!!_ = 0.141 
K c 

420K - 705. 7 P = 7. 58 c 

+ 825 p = 2.8 

Thus the required G (s} has the form 
c 

G (s) =l O.l024(s t 0.141) 
c (s + 0.0034) 

The root locus is seen in Fig. 6-2. The points encircled by triangles are 

the roots of the system. This shows the applicability of the procedure . 

6.2 Cascade Compensation (Continued) 

For many problems it is more convenient to use less sophisticated 

design techniques, such as a combination of sketches with basi~ graphi~al 

interpretations, or curves calculated with the digital computer. Illus­

trations of these techniques are given in the following sectio~ . 

Example 6.2 

Solution: 

G (s) _ 106 
u -- s (s + 5) 

Design a lead compensation which makes the system have C ~ 0.6. 

106.K (s + z) 
c 

G (s) = s(s + 5)(s tP} 

The characteristic equation is 

s
3 + (5 + P)s

2 + (5P t 106 K )s + 106 K z = O. 
IC C 

Mitrovic equations for B
0 

- B1 scheme areD for this systemg 

B = (5 + P) w
2 

- 1. 2 w3 
0 

Bl = 1.2(5 + P) w- 0.44 w
2 

• 

Here~k(t) are expressed numerically for the value C = Oe6. Previous tables 

tell that the figure of B
0 

- B1 is like Fig. 6·2 to have a~ enclosure. It 

is actually seen that 
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w 1 < w m m2 

holds for any P by the table. Also they show that 

Bo max= 1~ (5 + P)3. 

If A = 106 K z = 106 Pis in oro~ this e~closure 9 the, following 
0 c 

relation must existg 
1 3 

106 P ~ ~ (5 + P) o 

~ ~ 25, and 0 ~ p< Ool satisfy this i~equality. As a load se~tio~ is ree 

quired, P = 28 is adopted. Then A
0 

= 2968. B
0 

is equal to this value if 

w~ 23. Substituting this value and P = 28 i~ the B
1 

equatio~9 it is seen 

Bl = 670 
A1 must have this value if M (A

0
, A1) is o~ the ~ = 0.6 curve. 

which gives 

and 

ThiUlS 

Al = 5 P + 106 Kc = 670 

K = 5, c 

z = P/K = 5.6. c 
G (s) turns out to be c 
G (s) = 5 (s ± 5.6) 

c (s + 28) 

If a lag network is desired, P = 0.1 is a good choice. 

A = 106 P = 10.6 
0 

B
0 

has this value when w~ 2. B1 has the value 10.48 correspondingly. 

Al = 5 P + 106 K~ = 10.48 

Kc ~ 0.1 

z = P/K = 1 

Thus the lag compensation has 

Example 6.3 

G (s) = 0.1 (s ± 1) o 

c (s + o. 1) 

G (s) = u 8 (s + 6) 
s(s + l)(s ± J) 

Stabilize this system with a single sectio~ compensatio~ ~ircuito 
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Solutiong 

are 

G (s) = Kc(s + z) 
c (s + p) 

The characteristic equatio~ for the whole system is 

s
4 + (4 + P) s

3 + (3 + 4P + 8Kc) s
2 + { 3P + <6 + z) 8Kc } 

s + 48 K z = Oo c 
The B1 - B

2 
plane for C = 0 is chosen and the Mitrovic equations 

B1 = (4 + P) w2 

B2 = 48 P/w
2 + w2 

K z = P is the relation to ~intain the error coefficient as beforeo From 
c 

the tables given previously, it is seen the graph of B
1 

- B
2 

has ·· the shape 

shown in Figo 6-30 Also the tables give 

Bl min= 4 (4 + P) J3"P 
Bz "-·~ ' =8~ m1n 

Polar analysis, for which .explanation is already given, tells that the 

M (A1, A2) point with the following relation 

Al = Blm 

A2 ~ B2m 

lies in the stable domaino 

These equations are transformed, 

11 P + 48 K = 4 (4 + P) J3P c 

3 + 4P + 8 K > 8 JJp c-
Multiplying the inequality by 6, subtract the former equatio~ f~om it 9 a~d 

the following inequality is deriv~d: 

(18 + 3P) > J48P (8 - P) 

P ~ 4 and P~ Ool sa~isfy this relationo Here it must be noticed that too 

large and too small values of P tend to make the correspo~di~g value of 

Kc impractical o In this case, P = ,8 a~d P = Oo 1 are found to be good trial 

valueso 
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(i) p = 8 

Blm= 12 X J384 = 235.2 

A1 = 88 + 48 Kc = 235.2 

K c = l:~ • 2 = 3 • 06 

A = 35 + 8K = 59.5 2 c 

B2u:= 2 J48P = 39.2 < A2 

Thus M (A1, A2) surely lies i~ the stable domain. 

is found to be 
G (s) = 3.06 (s + 2.56) 

c (s + 8) 

which is a lead network. 

(ii) P = o.l 

G (s) c 

By similar calculationt' a lag ~etwork with the following tra~s­

fer function is obtai~edg 

G (s) = 0.17 (s + 0.61) 
c (s + o. 1) 

Example 6.4 
(s) _ 8(a + 6) 

Gu -s(s + l)(s + 3) 

is to be compensated to have t > 0.4 by a si~gle lead ~etwork. 

Solution~ 
Ao 2 

B1 = 0.8 w + A3 W 

A 
- 0 2 B

2 
- 2 + 0.8 A3w + 0.36 w 

w 

First, assume P = 15, as was done in the previous problem. Campari~g 

coefficients 

B = 57 6 + 19 w2 
- o. 8 w3 

1 w 

B
2 

= 7~0 + 15.2 w + o.36 w
2

• 
w 

These equations tell that the B
1 

- B2 curve starts at infi~ity i~ the 

first quadra~t a~d ends at infinity i~ the se~o~d quadra~t 9 as is seen 

in Fig. 6~4. From the polar plot ~£ Fig. 6-5, it is easily see~ that 

the enclosure exists only when the B1 - B2 curve takes the shape shown 

in Fig. 6-4. This mea~s B1 is to have on.a mi~imum aKl.\d on.e ma..ximum, while 
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while B
2 

has just one minimum. If tables in THALER & ROWN~ Feedba~k 

Control Systems are used, this calculation is easily done and the shape of 

the curve is shown as follows in Fig. 6-6. The digital ~omputer does the 

same thing if the attached programming is used properly. 

Equation (11) shows~ 

A = 11 P + P + 48 K 1 ~ 

A2 = 3 + 4P + 8 Kc 

This A1 is equated to B1 = 600 to give the value of Kc~ 

K ~ 9.1 
c 

This gives the value of A
2 

A2 = 63 + 72.8 = 135 

which surely lies in the C = 0.4 en~losure. Thus the requi~ed ~ircuit is 

G = 9.1 (s + 1. 65 
c (s + 15) 

Example 6-5. 

is to be stabilized by a single sectioll'n ~ompem1satioll.'ll circuit. 

Solution~ 

G(s) = 420 Kc(s __ + z) 

s(s + 19{s + 15)(s + P) 

is assumed to be the transfer functio~ of the stabilized system. Then the 

characteristic equation for the system is 

s
4 + (16 + P)s

3 + (1.5 + 16 P)s
2 + (15 P + 420 K )s 

c 

+ 420 K z = 0 c 

As A
0 

is determined by P only, the B1 s B2 s~heme is preferable. 

The tables give the following equations for ~ = 0~ 
- 2 B1 - A3 W 

B2 = Ao/w2 + w2 

and the shape of the curve is shown in Fig. 6e7. Also the tables tell that 
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B2 (wmbn) = 2 JA; 
Bl (Wmin) = A3 JA;;: 

The polar analysis indicates that the M p~i~t with 

Al = Bl (~min) = Bl mi~ o 

A2 ~ B2 min 

certainly lies in the stable domaino 

These equations can be tra~sformed i~to 

15 P + 420 K = J 420 P (16 + F) c 

15 + 16 p ~ 2 ,J420 p 

The inequality is satisfied whe~ 

P > 4 o 5 or P < Oo 2 

From the root locus consideratio~» a large value of P may be 

prefe~ed, but too large a value tends to make the filter design im­

practicalo This is also true with the case of two small a value of Po 

P = 25 is quite a good guess as is showno 

p = 25 

Bl = (16 + 25) ,)420 X 25 = 4182 

Al = 15 X 25 + 420 Kc = 
K = 9 c 
and 

375 + 420 K c 

B
2 

= 2 J 420 X 25 = 204 

A
2 

= 15 + 16 X 25 = 415 o 

This shows theM (A1, A
2

) point surely lies in the stable domai~o 

The G (s) required can thus have the following formg 
c 

G (s) = 9 (s + 2o77) 
u (s + 25) 

Example 6.6 
_ 3780 (s + 2o77) 

Gu (s) - s(s + 1) (s + 1.5) (s + 25) 

is to be compensated to have ~ > o.6o 
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Solutiong 

If the compensator is assumed to be 
K (s + z) c 

Gc(s) = s + P ~ 

the characteristic equation is 

s 5 + (41 + P)s4 + (415 + 41P) ~J + (375 + 415P + 3780K ) s
2 

c 

+ (4155P + 10500K )s + lOSOOP = 0 c 
The B1 - B2 equations are (for C = 0.6) 

B
1 

= 1.2 A
0

/w + A
3
w2 .. 1.2 A4w3 + 0.44 w4 

B2 = A!/w
2 + 1.2 A3w - 0;.44 A4w

2 
- 0.672 uJ3 . 

These equations are too complicated a~d it is rather u~se to have 

preliminary checks such as to see what ranges of P are adequate 9 or 

whether one section will suffice. It is noticed that a larger value 

of P is needed for the purpose from the view-point of root locus method. 

P = 30 is tried and the graph is depicted as i~ Fig. 6-8. 

w 2.5 5 7.5 10 12.5 15 

Bl 16 X 104 11 X 104 11 X 104 12 X 104 13 X 104 12.8 X 104 

4 :· 4 4 B2 5.4 X 10 2.2 :x 10 2 X 10 

This P = 30 is a little short of the specification as the K li~e caX\\··0 t c 
hit the enclosure. The value of P must be cha~ged a little. So the 

effect of changing P is checked: 

d B2 = l.QSOO + 1.2 x 41 w- 0.44 w2 

""dP 2 
w 

This shows that at w = 10 

Bl (P + fl. P) - Bl (P) = 15500 fl. p 

B2 (P + fl. P) - B2 (P) = .~57 ll. P 
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Also it is seen that 

A1 (P + !l P, K + !::.. K ) - Al (P ~ K ) = 4155 !::.. P + 10500 /::.. K c c c 1!: 

A2 (P t !l P, Kc + !::.. Kc) - A2 (P~ Ki!:) = _415 6. P + 3780 A Kc 

If K = 1 o 63, then 
c 

A1 (P~ Kc) = A1(30, 1~63) = 141765 

A2(P, Kc) = A2(30, lo63) = 19000 

Thus it is seeltl\g 

Bl (P + A P) = 12 X 10
4 + 4160 f:j p 

A1(P t A P, K + /::.. K ) = 141765 + 4155 A P + 10.500 A K c c c 

A2 (P + /::.. P) = 10 9 X 104 + 1.57 A p 

A2(P + /::.. P, K + /l K ) = 19000 + 41.5 /::.. P + 3780 /::.. K c c c 

Here B
1 

(P + ll P) and B2 (P + /::.. P) mea~ B1 a@d B2 o~ the new curve. 

To have theM (A1, A2) poiltl\t in the eltlll!:losure the followi~g 

equations are ltl\eededs 

A1 (P + ll P~ Kc + !::.. Kc) = Bl (F + A P) 

A2 (P + l:l P, Kc + /::.. Kc) ~ B2(P + l:l P) 

Substituting,.the following results are obtailtl\edg 

21765 - 11345 !::.. P + 10500 l:l K = 0 c 

258 ~ P - 3780 /l K ~ O. c 

If AK = -0.1» theltl\ c 
ll p = 2 

is obtained from the first of these equatioltlls. This makes the left haltl\d 

side of the second equation equal to 894. This mealtlls the M(A1 ~ A2) point 

lies inside the new B1 - B2 curve by the amoultl\t of 894~ which assu~es the 
> r· 

stability with ' - 0.6» as the numerical values of the graph shows. 

Thus, it is seen that 

G (s) = 1.53 (s t 20 ... 9) 
c (s + 32) 

is the required compeltl\sation. 
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Note~ This method is app1icabl~ ol!llly whelm ll. P doe~m:0 tt ch,~mge 

the shape of the resulting graph too much, that isD the relative po~itiolrlls 

of maxima al!lld minima mu~t be kept on befo~e a~d after the change of P. 

6.3 Feedback Compensation 

Mitrovic 0s method 9 whether it implies the o~iginal or extel!llded 

one, is primarily just concerned with the $ystem ~haracteristi~ eq~ationD 

and so general pro~~dures are the same ilrll both ~as~ade al!lld feedba~k com· 

pensation. But in the latter compe~sation if a pure zero filte~ o~ pure 

derivative, and accelerative ones are peirmitted 9 the order of the orig­

ilrllal system need lrllOt be heightened. This means some simplification. 

Example 6.7 

For the system of Fig. 6-9;1 filll1d am adequate valu·~ :for Kt to make 

the system have ' > 0.6. 

Solution: The system characteristic equation is 
3 2 ~ 

s + 16 s + (15 + 420 Kt)s + 420 = 0 

B
0 

- B1 equations with C = 0.6 are given to be 

Fig. 6·10 

tables: 

2 3 B = 16 W - 1.2 w 
0 

B = 19. 2 w - o. 44 w2 
1 

The polar alrllalysis shows that B
0 

- B1 ~urve must ha~e the fo~ of 

to satisfy the specification. The values of w are given by the 
m 

wml = 8.8 

wm2 = 22 

·I 

which show the relation among the three coefficie!l'i1ts is favora~le to have 

an e1rnclosure. 

As A is kept to be 420 9 there must be two points on the ~urve for this case. 
0 

w= 5.9 is found to satisfy B
0 

= 420. B1(w) for this value is 

B1(5.9) = 19.2 X 5.9.., 0.44 X (5-9) 2 

= 98 

A1 = 15 + 420 Kt = 98 
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Thus Kt is found to beg 

Kt ~ 0.2 

Example 6.8 

(s) _ 450 (s + 4 
Gu - s(s + l)(s + S)(s + 7) 

is stabilized by acceleration feedback , as shown in Fig. 6-11 . 

Solution~ 

What values of K are applicable? 
a 

The system characteristic equation is 

4 + (13 + 450K )s3 + (47 + 1800 K )s
2 + 485 s + 1800 = 0 s a a 

B2 - B
3 

plane is preferable in this example, which gives fo~ C = 0, 

B Ao 2 
2 = -+ w 

w2 

B = Al 
3 2 

w 

From the table it is seen thatg 

and 

w2
i = Jl800 ;= 42.4, 

mn · 

B
2 

(w . ) = 84 • 8 · m1n 

B
3

(w . } = llo4 m1n 

From the polar analysis of stability, it is see~ that the B2 - B3 
curve must have the shape shoWlnl in Fig. 6-12, and M (A

2
, A

3
) must be i1mside 

this curve. So the following calculations are made to find the value of K g 
a 

l8QO 
2 w 

1 810 

1800 180 

1801 190 

485 48.5 

42.4 

42.4 

84.8 

11.4 

The ~raph of Fig. 6-13 shows 
T 

17 
Ka ~ 450 = o.04 

is applicable to get a stabilized system. 
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PROGRAM MIT BLM 
C PROGRAM IS TO GRAPH MITROVIC THALER BL VS. BM CURVES FOR EQUATION 
C A(N)*S**~A(N-1)* S**(N-1)+ •• + BL*S**L + • • +BM*S**Mf.. ·+A(l)* 

S + AZERO::C, 
C ACCORDING TO METHOD DEVELOPED BY THALER AND OTHERS. 
C PROGRAM IS DIMENSIONED FOR MAXIMUM N = .30. 
C PROGRAM IS NORMALIZED SO AS A(N) = 1.0 
C A(L) AND A(M) ARE ASSUMED TO EXIST, BOTH BEING EQUAL TO ZERO. 
C DATA CARDS 
C 1.USERS NAME AND PROGRAM IDENTIFICATION COLUMNS 1 THRU 27. 
C 2.0UTPUT SPECIFICATION 
C BLANK CARD IS PRINT AND GRAPH ARE BOTH REQUIRED. 
C WORD GRAPH IN COLUMNS 1 THR.U 5 IF GRAPH ONLY IS REQUIRED. 
C WORD PRINT IN COLUMNS 1 THRU 5 IF PRINT ONLY IS REQUIRED. 
C .3.0RDER OF EQUATIONt N9 12 FORMAT. · 
C 4. COEFFICIENTS AZERO THRU A(N), 8Fl0.2 FORMAT 
C 5. VALUES OF L AND M, 212 FORMAT. 

DIMENSION A(30), PHI(60), BLAPHI (60)~ BMAPHI(60), BL(900), BM(900), 
1 ITITLE(10), JTITLE(10); B(Jl) · 

C READ INPUT DATA 
READ lOO,(ITITLE(J), J=1, 4) 
READ 100,IOUTPUT 
READ 10l,N 
READ 102,AZERO,(A(J),J = 1,N) 
READ 103,L,M 

100 FORMAT(A7,3A8) 
101 FORMAT(l2) 
102 FORMAT(8F10.2) 
103 FORMAT(212) 

C SET UP !TITLE FOR GRAPH AND JTITLE FOR PRINT. 
JTITLE (1) ~= 8HM 
LDQ(ITITLE + 1),ENA(20B), LRS(6)~ STQ(ITITLE + 1) 
LDA(ITITLE + 4), ARS(6),LDQ(JTITLE + 1),LLS(6),STA(ITITLE + 4) 
I TITLE (5) = 8HITROVIC 
ITITLE(6) ,=8HBL VS B 
!TITLE (7) =8HM CURVE 
DO 2 J=8, 10 

2 ITITLE(J) =Sk 
DO 3 J =1,10 

3 JTITLE(J) = ITITLE(J) 
C WE CHECK OUTPUT REQUIREMENTS 

.tTESTl = 8H 
~TEST2 = 8HGRAPH 
~ST3 = 8HPRINT 
IF(IT!ST1.- IOUTPUT)12,11,12 

11 INDICPR = 1 
INDICGR = 1 
GO TO 17 

12 IF(ITEST2 - IOUTPUT)14,13,14 
13 INDICPR =0 

INDICGR =1 
GO TO 17 
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14 1F ( ITEST3-IOUTPUT ) l6 , 15,16 
15 INDTCPR = 1 

lNDICGR = 0 
GO TO 17 

16 PRINT 208 
STOP 

208 FORMAT (20H ERROR IN DATA CARDS ) 
C PRINT RECORD OF INPUT DATA o 

c 

c 
c 

17 PRINT 200 

200 
201 
204 
205 
206 
207 
202 
203 

212 

5 

PRINT 204,(JTITLE(J),J = 1,7) 
PRINT 206 
PRINT 207,AZERO,(A(J),J =~,N) 
PRINT 202,L 
PRINT 203,M 
F'ORMAT(lHl) 
FORMAT(lHO) 
FORMAT(4X, 7A8) 
FORMAT ( 1H0,25HTHE ORDER OF EQUATION IS , 12) 
FORMAT(lH0,39HTHE COEFFICIENTS 9 AZERO THRU A( N) ARE ) 
FORMAT(20X,E14o6) 
FORMAT(7HBL IS B»12) 
FORMAT(7HBM IS B,12) _ 
THE EQUATION IS NORMALIZED SO AS TO GET A( N) = 1., 0 
ANRECIP = 1.0/A(N) 
PRINI' 212 
FORMAT«1HO, 10X,45 HTHE RESULTS REFER TO THE NORMALIZED EQUATION o) 
AZERO = AZERO*ANRECIP 
DO 5 J=1,N 
A( J) = A(J)*ANRECIP 
THE STEP SIZE WILL BE TAKEN AS 0 o 001 TTMES THE FREQUENCY OF INTER­
EST o FOR THIS AIM WE LOOK FOR THE VALUES OF OMEGAN WHICH MAKE BOTH 
OF THE LAST TERMS IN BL AND BM DOMINATE FOR EACH VALUE OF ZETA o 
LM =L-M 
LMl =XABSF ~LM) 
IF((LM1/2)*2-LM1)175,74,75 

74 ZETA =O o 1 
KK =5 
GO TO J6 

75 ZETA= OoO 
KK =6 

76 DO 50 JJ =l,KK 
C CALCULATE CFBYSHEV POLYNOMIALS~ 

20 PHI(31) =-lo 
PHI(t32) =2o*ZETA 
NP30 = N+-30 
DO 21 K =33, NP3C 

21 PHI(K) =-2o0*ZETA*PHI(K-1)-PHI(K-2 
PHI(30) =Oo 
HN =30-N 
DO 105 J =MN, 29 

105 PHI(J) =-PHI(60-J) 
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C THfE TERMS TN BL AND BM ARE CALCULATED IN TWO STAGES . 
DO 104 1 =l,N 

104 B«l + 1} = A~1) 
B(1) = AZERO 
NPl = N +1 
NMl = N- 1 
NM2 = N-2 
L29 = 29-L 
M29 = 29-M 
DO 22 1 =1, NP1 
BLAPHI~l) = B(l} *PHI(I~+ M29)/PHI(30-LM) 

22 BMAPHI(I) = B(I) *PHI(I + L29)/PHI(30+LM) 
OMEGAM = 0.5 
DO 8K = 1,12 
CMEGAM = 2. O*OMEGAM 
SL = BLAPHI(1) * OMEGAM**(-L) 
L1 = L + 1 
DO 311 1 = 2,NP1 

311 SL = SL + BLAPHI(I)*OMEG~(T -L1) 
NL =N-L 
IF<BLAPHI(NP1))71,170,71 

170 IF (BLAPHI(N})7C,172,70 
71 BSA = BLAPHI (NP1 )*OMEGAM**NL 

GO TO 72 
70 BSA = BLAPHI {N)*<M:GAM**(NL - 1) 

GO TO 72 
172 TF(BLAPHI(NM1))171,173,171 
171 BSA = BLAPHI(NMl)*OMEGAM**(NL -2) 

GO TO '3Z 
173 BSA = BLAPHI(NM2)*0MEGAM**(NL - 3) 

72 BSLN = ABSF(BSA) 
BSL =ABSF(SL-BSA) 
IF(BSL-BSLN)9,8,S 

8 CONTINUE 
9 STEP= OMEGAM 

OMEGAN = 0.5 
DO 68 K =1,12 
OMEGAN = OMEGAN*2. 0 
SM =BMAPHI(1)*0MEGAN**(-M) 
Ml = M + 1 
DO 312 1 =2,NP1 

312 SM = AM +BMAPHI(I) * OMEGAN**(I-Ml) 
IF(BMAPHI (NP1))81,180,81 

180 IF(BMAPHI(N))80, 182,80 
81 BSB = BMAPHI(NP1)*0MEGAN**NM 

GO TO 82 
80 BSB = BMAPHI(N)*OMEGAN**(NM-1) 

GO TO 82 
182 IF(BMAPHI(NM1))18~,183,181 
181 BSB = BMAPHI(NM1)*0MEGAN**(NM-2) 

GO TO 82 
183 BSB =BMAPHI(NM2)*0MEGAN**(NM-3) 
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c 

c 

82 

68 
69 

216 

215 
123 

23 

24 
25 
26 
27 

29 
30 

209 
210 
211 

132 
13_4 
232 
33 

34 

35 

36 

37 

BSMN = ABSF ( BSB) 
BSM = ABSF (SM - BSB) 
IF (BSM - BSMN)69,68,68 
CONrlNUE 
STEN =OMEGAN 
IF(STEP ~ STEN)216,215,215 
STEP= STEN*0.001 
GO TO 123 
STEP =STEP*O. 001 
DO 310 lOMEGAN ;::1, 900 
OMEGAN =I OMECAN 
OMEGAN =OMEGAN*STEP 
SUML = BlAPHI ( 1) *OMEGAN** (-L) 
SUMM =RMAPHI (1) *OMEGAN**(-M) 
DO 23 1=2,NF1 
SUMLF,SUML +BLAPHI~l)*OMEGAN**(I-Ll) 
S~SUMM +BMAPHI(I)*OMEGAN**{I-Ml) 
BL(IOMEGAN) = SUML 
BM(IOMEGAN) = SUMM 
PRINT EVERY TENTH POINT IF PRINT OUT IS REQUIRED. 
IF(INDICPR-1) 310,24,310 
IF(OMEGAN·l) 25,27,25 
IF (XMODF ~LOMEGAN , 100))26,29,26 
IF(XMODW(IOMEGAN , 10))310,30,310 
PRINT 200 
PRINT 209,ZETA 
PRINT 210 
GO TO 310 
PRINT 201 
PRINT 211,0MEGAN 9 BL(IOMEGAN)~BM(IOMEGAN) 
FORMAT(lOX,35HRESULTS OF COMPUTATION WITH ZETA= ,F4.2) 
FORMAT(1/20X, _10H OMEGAN , 10H BL , 10H BM //) 
FORMAT ( 19X , E 11 .. 5 , 2X , E 11 • 5 , ZXI, E 11 • 5) 
CONTINUE 
NUMPTS = 900 
GRAPH IF GRAPH IS REQUIRED 
IF(INDICGR -1)49,132,49 
IF((LM1/2)*2-LM1)134,232,134 
GO TO (33,34,J5,36,37,38),JJ 
GO TO (33,34,35,36,37),JJ 
MODCURV ;:o 
LABEL= 2Hl 
GO TO 39 
MODCURV =0 
lABEL =2H2 
GO TO .39 
MODCURV =O 
LABEL= 2HJ 
GO TO 39 
MODCURV =O 
LABEL= 2H4 
GO TO 39 
MODCURV =0 
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LABEL =2H5 
GO TO 39 

38 MODCURV =0 
LABEL =2H6 

39 SFX =0. 0 
SFY =o.O 
MINOFFX =o 
MINOFFY =o 
LABELNO =11 
MODE= 0 
N1 ==0 
NE =o 
CALL GRAPH2 (NUMPTS , BL , BM, 8 , MODCURV , LABEL , ITITLE ~ SFX , SFY , MINOFFX 9 

IMINOFFY 9 LABELNO,MODE,Nl,N2) 
49 ZETA =ZETA +0.2 
50 CONTINUE 

END 
END 
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APPENDIX 

If w goes to zero in the equatio~ (3-5), n 
-= i... . .... 
~ (w ) = (Ai - B. ) W e1 + (A . - B . ) WJ e . n 1 n J J n J 

it becomes 

... { i... . .... } 
lim F (w) = -lin Bi(w e. + B.(w) w1 e. 

w ... 0 n n 1 J n n J 
n 

. = A ~ j (2:) ; . - cp i (l:) -;~ 0 . . 1 j 
rp i- j ~Z:) cp i- j (Z:) 

A ~ ... ~ = · o cp.((;)e1 -cp.(Z:)e. 
cp .(Z:) J . 1 J 

i•J . ' 
.... .... 

Here ei and ej are 

_ ;i =L i % + ie = < - c + I J1 -z:2 
> 

1 

;;j = LJ % + j9 = ( - z: + I j 1 -1;; 2)j 

and the following expressions are derived 

(3-5) 

(A-1) 

(A-2) 

... j 2 j 2 e1 = -C + I 1 - C = cp 
0 

{2:) = C <P1 ((;) - Il -C cp1 (2:) 

~ 2 2 
e2 = -1 + 22: + I J1 - C (Z:) = cp 1 (Z:) + Z: <P

2
(Z:) -

-I J1 -z:2 
cp 2 (C) 

From these formula, it is seen that 
... 

cp i (Z:) e j = cp i (Z:) cp j-i (Z:) + C cpi (Z:) cp j (Z:) - · 

- I)l -c2 ~.<Z:> cp.(Z:) 
1 J (A-4) 

.... 
cpj<C> ei = <Pj(C> cpi-1<Z:> + t<Pj(Z:) <Pi<Z:>-

- I /1 -c2 
cp j <C> cpi (C) 



APPENDIX (Continued) 

Subtracting the latter from the former, i t i s s een 

Also it is seen that 

from a simple mathematical induction . 

Substituting (A-7) and (A-8) into (A-1) gives 
.... 

lim F (w ) = A 
w-+0 n o 

n 
which is the required result, equivalent to equation (3-6) 

(A-8) 
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